Short Communication

Degradation profile and reversed-phase LC method development of the antiinflammatory drug, Ro 24-5913

N.D. AGGARWAL,* D. GOLDMAN, A.W. MALICK and K. SETHACHUTKUL

Hoffmann-La Roche Inc., Pharmaceutical Research and Development Department, 340 Kingsland Street, Nutley, NJ 07110, USA

Keywords: Leukotriene D₄ antagonist; degradation profile; reversed-phase liquid chromatography; photoisomerization; acid hydrolysis; pH sensitivity.

Introduction

Leukotrienes are naturally occurring, biologically active, unsaturated lipids derived enzymatically from polyunsaturated acid precursors, such as arachidonic acid [1-3]. Recent publications have implicated LTD₄ as a mediator in asthmatic responses [4-7]. Ro 24-5913 ((*E*)-4-[[3-[2-(4-cyclobutyl-2-thiazolyl)-

etheryl]phenyl]amino]-2-2-diethyl-4-oxobutanoic acid) has been selected as an experimental drug for treatment of asthma. This paper presents the development of a compound specific, reversed-phase liquid chromatography method and the degradation profile of Ro 24-5913. This analytical method will support the development of oral and metered dose inhaler formulations of Ro 24-5913 for use in both pre-clinical and clinical studies.

Experimental

Chemicals

All chemicals and solvents were of analytical and HPLC grade, unless otherwise indicated.

Instrumentation

The HPLC system consisted of a Waters Model 600E System Controller, Waters WISP Model 710B Autoinjector, and Applied Bio-

LC methods

Samples of 20 μ l were injected under ambient conditions onto a reversed-phase Zorbax C₁₈ (5 μ m) (15 cm × 4.6 mm i.d.) column with a Zorbax reliance guard column (12.5 mm × 4 mm i.d.) containing C₁₈ (5 μ m) packing material. The flow rate was 1.0 ml min⁻¹ using the following mobile phase systems.

System A. This system consisted of methanol-acetonitrile-buffer-2-propanol (55: 20:20:5, v/v/v/v). The buffer was of tetrabutylammonium dihydrogen phosphate (5 mM) in 1% acetic acid adjusted with 6 N NH₄OH to pH 6.0.

System B. This system used the mobile phase of HPLC System A containing the buffer adjusted to pH 4.0.

System C. This system consisted of methanol-acetonitrile-buffer-2-propanol (50: 28:20:2, v/v/v/v) with the same buffer used in HPLC System A, but adjusted to pH 5.0.

systems 783 Programmable Absorbance Detector operated at 240 nm wavelength or a Waters 990 Photodiode Array Detector. Ultraviolet spectra were determined with an HP 8452A Diode Array Spectrophotometer.

^{*}Author to whom correspondence should be addressed.

System D. This system used the mobile phase of HPLC System C with the buffer adjusted to pH 5.5.

System E. This system used the mobile phase of HPLC System C with the buffer adjusted to pH 7.0.

System F. This system used the mobile phase of HPLC System D on Zorbax C_{18} (5 µm) (25 cm × 4.6 mm i.d.) column with a Zorbax reliance guard column (12.5 mm × 4 mm i.d.) containing the same packing material.

Semi-preparative LC system

The semi-preparative system consisted of a Waters Delta Prep3000 Preparative Chromatography System, Rheodyne 7010 Injector with 2.6 ml loop, Waters Delta Pak C18-100A, 15 μ m, 30 cm \times 7.8 mm i.d., semi-prep column with a Supelco Pelleguard C_{18} (2 cm) guard column, Waters Lambda-Max Model 480 LC Spectrophotometer, and LKB 2210 Recorder. The mobile phase consisted of methanol-acetonitrile-water-2-propanol (55: 20:20:5, v/v/v/v). The chromatography was carried out on multiple 1-ml injections of the degraded sample solution using a flow rate of 4.0 ml min^{-1} . The fractions corresponding to principal degradation product from the photolytic degradation of the methanolic solution of 1 were collected and concentrated with a rotary evaporator.

Photolytic degradation — solid state

Approximately 30 mg of 1 was placed in a quartz vial and exposed to short wave (254 nm) high intensity ultraviolet light for up to 24 h. After 4 and 24 h, a fraction of approximately 12 mg was withdrawn and weighed accurately and dissolved in 25 ml of methanol.

Photolytic degradation — solution state

A 0.5 mg ml⁻¹ solution of **1** was prepared by

dissolving 50 mg in 100 ml of methanol (Solution A). A 15-ml aliquot of Solution A was transferred into a 25-ml clear borosilicate flask and placed in a Cooper-Lackman fluorescent light chamber (light intensity: 400 ft candles) for up to 24 h. After 4 and 24 h, an aliquot of 5.0 ml was withdrawn and diluted to 10 ml with methanol.

Hydrolytic degradation — acid hydrolysis

A 10-ml aliquot of Solution A was placed in a 100-ml flat bottomed amber flask equipped with a reflux condenser; 10 ml of 0.2 N HCl was added and the contents refluxed on a steam bath for 1 h. The reaction mixture was cooled and diluted to 50 ml with methanol.

Hydrolytic degradation — base hydrolysis

A 10-ml aliquot of Solution A was placed along with 10 ml of 0.2 N NaOH in a 100-ml flat bottomed amber flask equipped with a reflux condenser. The contents were refluxed on a steam bath for 1 h. The reaction mixture was cooled and diluted to 50 ml with methanol.

LC response factors

The response factors at 240 nm were calculated for 1 and for each of the degradation products by dividing the respective area response by the individual concentration in μ g ml⁻¹. Relative response factors (RRF) were calculated by dividing the response factor of 1 by the response factor of the degradation product. Per cent purity by area normalization and relative response factors (RRF) of compounds 1–5 are given in Table 1.

Results and Discussion

The chemical structures of 1 and its degradation products (2-5) are given in Fig. 1. Compound 3 is an immediate precursor and is a potential impurity in the synthesis of 1. An initial LC method was developed for the separation of 1 and 3 using LC System B.

Table 1

Chromatographic data of Ro 24-5913 and degradation products/impurities using HPLC System F

Component	Retention time, t _R	Relative retention time	Relative response factor at 240 nm	Purity by area normalization
1	12.0	1.0	1.0	98.9
2	7.9	0.6	1.0	98.5
3	10.4	0.9	1.2	87.1
4	22.1	1.8	2.1	98.9
5	23.4	1.9	1.4	99.6

Figure 1 Chemical structures of (1) Ro 24-5913, (2) Ro 24-9921, (3) Ro 24-6496, (4) Ro 24-9971 and (5) Ro 24-6593.

However, the stressed solutions contained additional peaks with retention times similar to 1 which made it necessary to develop a system capable of resolving these degradation products. Table 2 presents the experimental conditions, the amounts of degradation products and impurities formed, and the mass balance (%).

Exposure of a methanolic solution (Solution A) of 1 to fluorescent light for 24 h formed an additional peak at a retention time of 2.9 min using System A as shown in Fig. 2(A). This degradation product was formed in 65% yield by area per cent and was characterized as the *cis* isomer (2) by ¹H-NMR (DMSO-d6): δ 0.79 (t, 6H, CH₃), 1.64 (q, 4H, CH₂), 1.90 (m, 2H, ring CH₂), 2.19 (m, 4H, ring CH₂), 2.57 (s, 2H, COCH₂), 3.53 (m, 1H, ring CH), 6.83 (d, 1H, *J* = 12 Hz, *cis* CH), 6.88 (d, 1H, *J* = 12 Hz, *cis* CH), 7.17 (d, 1H, ArH), 7.31 (t, 1H,

ArH), 7.55 (d, 1H, ArH), 7.66 (s, 1H, ArH), 9.91 (s, 1H, NH); ¹³C-NMR (CDCl₃/DMSO): δ 8.7 (C-20, C-22), 18.5 (C-3), 28.4 (C-2, C-4), 28.9 (C-19, C-21), 36.5 (C-1), 41.5 (C-17), 49.1 (C-18), 112.8 (C-8), 119.6 (C-5), 119.8 (C-9), 123.9 (C-13), 124.6 (C-11), 129.1 (C-15), 134 (C-14), 136.8 (C-7), 139.1 (C-10), 160.6 (C-12), 163.5 (C-16), 170.2 (C-6), and 178.9 (C-23); FT-IR (KBr) 780 (-CH=CH-) cm⁻¹; MS: m/z 412 (M⁺); UV (λ_{max} , MeOH): 208, 244, and 306 nm. When 1 in solid state was exposed to high intensity ultraviolet light for 24 h, a new degradation product was formed at a retention time of 4.8 min using System A as shown in Fig. 2(B), tentatively identified as 4. The photolytic degradation pathway of 1 is shown in Scheme 1.

The hydrolytic degradation pathway of 1 is shown in Scheme 2. Refluxing 1 in 0.1 N HCl– MeOH (1:1) for 1 h on a steam bath formed

Table 2 Degradation of Ro 24-5913

		Compour	nd (RRT)	(m moles)	Degradat	ion produc	cts found % Ar	ea normali	zation		Mass
Degradation conditions	2 (0.72)	1 (1.00)	3 (1.09)	4 (1.69)	5 (1.74)	2 (0.72)	1 (1.00)	3 (1.09)	4 (1.69)	5 (1.74)	balance (%)
Methanolic solution exposed to fluorescent light ² for 4 h Methanolic solution accorded to	0.044	0.442				2.1	90.9				9 [.] 66
fluorescent light for 24 h	0.319	0.167	ļ	1	I	65.2	34.1		I	I	100
Solid exposed to ultraviolet light for 4 h ³	0.001	0.482	1	0.021	I	0.2	97.5	I	2.2	I	1035
Solid exposed to ultraviolet light for 24 h Methanolic-0 1 N HCl solution refused	0.001	0.366	I	0.136	I	0.2	83.5	ļ	16.2	-	1035
for 1 h ⁴ Methanolic -0.1 N NaOH solution	I	0.011	0.462	I	0.08	0.1	3.7	79.0	I	16.5	1144
refluxed for 1 h	0.019	0.464	I	Ι	Ι	3.9	96.0	I	ļ	I	99.64
¹ Known compounds were calculated usi	ng experim	nentally der	termined r	elative resp	onse facto	rs (RRF)	to Ro 24-5	913. For ui	hknowns, 1	the RRF w	as taken

to be unity and the molecular weight was approximated to be equivalent to Ro 24-5913. ²Cooper-Lackman Light Chamber (400 ft Candles). ³0.3% unknown at RRT of 0.57 was present. ⁴0.1% unknown at RRT of 1.41 and 0.5% of unknown at RRT of 2.32 were present. ⁵The molarity of the control was 0.488 mM. HPLC System B was used. ⁶The molarity of the control was 0.485 mM. HPLC System A was used.

Scheme 2 Hydrolytic degradation pathway for Ro 24-5913.

1042

Figure 2

Chromatograms for photolytic degradation of Ro 24-5913 using HPLC System A. (A) Methanolic solution exposed to fluorescent light for 4 h, (B) solid exposed to high intensity ultraviolet light for 24 h.

Figure 3

Chromatograms of Ro 24-5913 hydrolysis products using HPLC System A. (A) Methanolic-0.1 N HCl solution refluxed for 1 h, (B) methanolic-0.1 N NaOH solution refluxed for 1 h.

Figure 4

Chromatograms showing the effect of mobile phase pH on the separation of Ro 24-5913 and degradation products. (A) pH 5, (B) pH 5.5, (C) pH 7.

79% of 3 and 16.5% of 5 as the major degradation products along with minor peaks attributed to 2 and 1 [Fig. 3(A)]. Acid catalysed ring closure of the succinamide moiety was favoured which yielded 5 as the predominant product. Compound 1 was far less sensitive toward base hydrolysis as compared to acid hydrolysis. However, small amounts of unknown products were formed when 1 was refluxed in 0.1 N NaOH-methanol solution as shown in Fig. 3(B).

During HPLC method development, 1 and 2 were found to be highly sensitive to changes in mobile phase pH as shown in Figs 4 and 5. The

Figure 5 Effect of buffer pH on peak retention times.

Effect of methanol concentration at fixed buffer pH 5.5 on peak retention times.

effect of methanol concentration at a fixed buffer pH of 5.5 on peak retention times is shown in Fig. 6. Using HPLC Method D, 4 appeared at the front of 5. A longer C_{18} column (25 cm) at buffer pH 5.5 using HPLC System F provided a satisfactory separation of

Figure 7

Chromatogram of a spiked mixture of Ro 24-5913 and degradation products using HPLC System F.

Ro 24-5913, the degradation products and unknowns as shown in Fig. 7.

Conclusions

A reversed-phase LC method was developed for the evaluation of Ro 24-5913. This compound undergoes primarily photolytic and hydrolytic degradation. Mass balance was obtained for the degradation pathways evaluated. The major light-induced degradation product of 1 in solution was isolated and structurally identified as the *cis* isomer (2).

Acknowledgements — The authors wish to thank Mr James H. Johnson and Dr Roy Pancirov for carrying out the proton-NMR, carbon-NMR, and mass spectrometry. Also, the technical proof-reading assistance of Dr Elaine Phillips is acknowledged.

References

- [1] B. Samuelsson, S.E. Dallen, J.A. Lindgren, C.A. Rouzer and C.N. Serhan, *Science* 237, 1171–1176 (1987).
- [2] K.F. Austen and R.A. Lewis, in *The Leukotrienes*, *Chemistry and Biology* (L.W. Chakrin and D.M. Bailey, Eds), Chapter 1. Academic Press, Florida (1984).
- [3] N. Cohen, G. Weber, B.L. Banner, R.J. Lopresti, B. Schaer, A. Focella, G.B. Zenchoff, A.-M. Chiu, L. Todaro, M. O'Donnell, A.F. Welton, D. Brown, R. Garippa, H. Crowley and D.W. Morgan, J. Med. Chem. 32, 1842-1860 (1989).
- [4] W.R. Mathews, J. Rokach and R.C. Murphy, *Anal. Biochem.* 118, 96–101 (1981).
 [5] M.A. Wynalda, D.R. Morton, R.C. Kelly and F.A.
- [5] M.A. Wynalda, D.R. Morton, R.C. Kelly and F.A. Fitzpatrick, Anal. Chem. 54, 1079-1082 (1982).
- [6] F.A. Fitzpatrick, W.F. Liggett, D.R. Morton and J.E. Pike, in Research Studies Press (P.J. Piper, Ed.), pp. 78-89. Wiley (1983).
- [7] J.T. Carstensen, in Drugs and the Pharmaceutical Sciences (J. Swarbrick, Ed.), Vol. 43, pp. 337-410. Marcel Dekker, New York (1990).

[Received for review 27 November 1992; revised manuscript received 26 April 1993]